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A semigroup S is called a union of groups if each of its elements lies in a (maximal) 
subgroup of S. It is well known that in a union of groups Green’s relation 3 
(defined by a/‘b if and only if SaS=%S) is a congruence whose classes are 
completely simple subsemigroups of S and such that S/g is a semilattice (i.e. 
satisfies x1=x, xu=yx) [I]. 

In this paper we present a construction of all unions of groups S having the 
following properties: 

(1) S is the syntactic semigroup of a language of the form C+ = Un,O Cn, where C 

is a finite prefix code; 
(2) S/f is the two-element semilattice. 

Using the terminology of Clifford and Preston the semigroups studied here are ideal 
extensions of a completely simple semigroup by another, or unions of groups of 
height two. All the completely simple semigroups satisfying condition (1) above 
have been obtained in [6], using the concept of team tournament, All unions of 
groups S satisfying (1) and having a non-trivial group of units are constructible 
using certain factorizations of B,, the group of integers modulo n [4]. The two 
construction techniques are combined here to give all the unions of groups satisfying 
(1) and (2) as transition semigroups of what we call a ‘standard amalgamation’ of 
the automata of two team tournaments (Theorem 3.2). 

It is likely that the process given here generalizes to a construction of all unions of 
groups satisfying (1) provided some convenient representation of the two 2-classes 
case is found. We conjecture that all these semigroups are chains of length n of 
completely simple semigroups, and that they are - in general - of group complexity 
n, in the sense of J. Rhodes [3] (cf. also Tilson’s Chapter 12 in [2]). The complexity 
conjecture, at least in the case n = 2, can be verified on examples using the results 
of [ll]. 

Directly related to these considerations is the problem of describing the variety I 
of all languages whose syntactic semigroups are unions of groups (see [2], [lo]). In 
view of the recent results of J.E. Pin [9], the following question arises naturally: Is 
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Y generated by its finite prefix codes (i.e. is it true that 1 is the smallest variety 
containing all the languages C’ where C is a finite prefix code, and the syntactic 
semigroup of Cc is a union of groups)? Our results are the initial steps toward 
an answer. 

The first section of this paper contains preliminary results on factorizations of Z,, 
and a determination of certain permutations of Z, preserving a transversality 
property. In Section 2 we define the notion of amalgamation of automata. This is a 
simple construction creating an automaton on the disjoint union of the sets of states 
of others, merging all initial states into a single one. Section 3 contains our main 
result: The unions of groups satisfying (I) and (2) are the transition semigroups of 
the automaton obtained by an appropriate amalgamation of automata of team 
tournaments. The proofs are presented in Section 4. 

We recall that given a language L in A + (i.e. a subset of the free semigroup A + on 
the set A), the syntactic semigroup Synt(L) is defined as the quotient of A+ by the 
congruence ~(L)=((u,o)~A+xA+:xuy~L 0 xuy~L, for every x,yeA*}. For 
other undefined terminology, we refer the reader to [l], [2], or [5]. 

1. Perfect transversals for certain factorization.5 of Z, 

An equivalence relation Q on Z,, is called a perfect partition if Q admits a system of 
representatives T such that T+ i (modulo n) remains a system of representatives of Q 
for every i. The set T is then called a perfect transversal, and one can show that the 
class of 0 module Q, say K, together with T form a factorization of Z,, in the 
following sense: Every XE Z,, can be written uniquely x= k + t with k E K, t E T (see 
[4)). Since the problem of finding all factorizations of Z, is open, the same holds for 
finding all the possible perfect transversals of E,. However, among the factoriza- 
tions of h, there are factorizations Z,, = K@ T that do not require any reduction 
modulo n. They are called factorizations of the set (0, 1, . . . , n - 1). and are all 
obtainable as follows: 

Letkl(kzI---(kN/ b n eachainofdivisorsofn(Ireads‘divides’,andkI<kz<...< 
kN<n with k, possibly being 1). Form the polynomials 

1 -_Xh 1 _-h 
p(x)=- - .a. 

1 _-kz 1 --h 

l-x l-xk’ 
and q(x)=- - .a+ 

~_~ki 1sXk3 ’ 

Then(1-x”)/(l-x)=p(x)q(x),and{0,1,...,n-1}=K~TwhereK(resp. Tlisthe 
set of exponents of the terms of p(x) [resp. q(x)]. Furthermore, since 

I-x” 
--p(x)[q(x)x’] modulo (1 -x9, 
l-x 

T is a perfect transversal of the partition n whose classes are the various subsets 
K + t, t E T. We shall say that I[ is the perfect partition defined by the sequence 
k, ) k2 1-e. 1 kN ( n. Besides the basic transversal T defined above, we propose to find 
all the possible perfect transversals of n. 
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Proposition 1.1. Any perfect transversal T of the partition of Z, defined by the 

sequencekllkzI...IkN/ n is obtainable from a perfect transversal T’ of the partition 
of Qv defined by the sequence k, / kz 1 .a. / kN_, j kN as follows: 

(a) In case N is even, T= { t’f lkN : t’E T’ and L arbitrary}; 
(b) In case Nis odd, T=U,_,(T’+hk,). 

Proof. We denote by 71 [resp. ~‘1 the partition of Z, [resp. Zk,%] defined by the 
sequencekl/k21...jkNIn[resp. k,Ik2/...IkiV]. 

In case N is even, each class of n is obtained from a class of n’ by addition of 

k,v,2kN,..., n - kN. Diagram 1, where the rows are the different classes of n, shows 
the relationship between TI and n’. 

0 1 2 ..a k, - 1 I ... (kI,,_,-kN-Z+...+k,- 1) 
, 

kl k,+ 1 I 
I 

(kN-k,V_,;+.*+kz-k,) kN-1 I 
I 

I 

I 
I kN ..a (n-kN+kN_,-...+kl-l) 

I 
I . . . n-l 

Diagram I 

Since N is even each class of x is globally invariant under the addition of kN 
(modulo n). Hence every perfect transversal T of 71 gives by reduction modulo kN a 
perfect transversal T’ of R’. Conversely, when adding to each element t’ of a perfect 
transversal T’ of IC’ an arbitrary multiple of kN we obtain a transversal T of 71. For 
every i, the elements of T+i are distributed in the same classes as their residues 
modulo ks, that is as the elements of T’+ i. Since T’ is a perfect transversal, the 
same holds true for T. 

In case N is odd, the classes of n are those of 7~’ and their translates by multiples 
of kN as indicated by the rows of Diagram 2. Reduction modulo k, shows that any 
perfect transversal T of 7c induces a perfect transversal T’ of the partition 71’. Also T 
induces transversals on each classes of the blocks [kN, 2kN - I], [2k.v, 3k,v - I], . . . , 
[n - kN, n - l] that are perfect when reduced modulo kN. The assertion in (b) is that 
these trNWerSdS are prKiSdy T’+ kN, T’+ 2kN, . . . , T’+ n - kN. 

To prove it we may assume (in view of the fact that T is perfect) that OE T and 
show that this implies kN,2kN, . . . , , n - kN E T. Proceeding by induction on N, we 
consider the set S of all multiplies of k2. The partition 71 defines a partition zs on S 
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0 

k, 

1 2.*./k,--1 *** (k,v--k,L._,+... +kk,-1) 

(k,_,-kN_;+...+kz-l) . . . k,$- 1 

t 
____-__--_--_-_---_--------_-- ---_----_ ! 

k/v 
kN+k, 

(n-k,+k,_j-***+kz-k,) . . . n-l 

Diagram 2 

admitting a transversal TnS which remains a transversal when adding multiples of 
kz. Hence the classes of rrs are obtained from a partition TC” defined by the sequence 

by multiplying all elements by kz, and TfI.S is also obtained from a perfect trans- 
versal T” of this partition by multiplication by kz. By the induction hypothesis T” 
contains 

k,v 2k,v n-kn; 
j-$-p..f kz 9 

hence kN, 2kN, . . . , n - kN E T. 

Example. The sequence 3 / 6 1 12 I36 defines the following partition of Zs6: 

!! 1 2 6 7 8 
2 4 5 2 10 11 

z 13 14 18 19 20 
g 16 17 2 22 23 
24 25 26 30 31 32 
27 28 29 2 34 35 - 

There are exactly 2 perfect transversals containing 0: {0,3,12,15,24,27} and 
{0,9,12,21,24,33}. 

Letting T be the basic perfect transversal of the partition of Z,, defined by the 
sequence k, 1 kz j ..a 1 kN 1 n, we propose to find all the permutations f~ of H, such that 
p(T+ i) is a perfect transversal for every i=O, 1, . . . . We call such a permutation v a 
perfect permutation corresponding to kl 1 k2 1 ... ( kN ( n. 

We denote by .Yk the symmetric group on the set {al, . . . , k - 1). 
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Proposition 1.2. Every perfect permutation @ of Z, corresponding to the sequence 
k, 1 kz 1 ... 1 kN 1 n is obtainable by extending a perfect permutation (p of Ekn corres- 

ponding to the sequence k, 1 kz ) a.. / kN_ , ) k,V as follows: 
For every i=O, 1, . . . . k,v- 1 choose a permutation ai E Y& and define 4 by 

Q(j) =cp(i) + aj(l)kN where 1 and i are the quotient and the remainder of the 
division of j by k,.,,, j = i + AkN with 0 s i< k,V. 

Proof. @(j) = @(j’) implies p(i) + ai(l)k,v = &i’) + a;&l’)kN with an obvious 
notation. Reduction modulo kN gives cp(i) =cp(i’), hence i=i’, and ,I =,I’. This 
shows that 4 is a bijection of Z,. Constructing any perfect transversal T of the 
partition of Z, from a perfect transversal T’ of & by the formula (a) or (b) of 
Proposition 1.1 a computation of @(T+ s) shows that it is a perfect transversal of the 
partition of Z, for every s = 0, 1, . . . , n- 1. Conversely assume that 4 is a perfect 
permutation of 72,. We consider successively the cases N even and N odd. 

N even. Every perfect transversal of Z,, is obtained from a perfect transversal of 
.Q, by adding arbitrary multiples of kN. With T the basic transversal, we observe 
that in the transversals T, T+ kN- ,, T+ 2k%_ ,, . . . , T+ (n - kN_ ,), any two consecu- 
tive transversals have a segment of length at least kN_, in common. Hence by 
Proposition 1.1(b) the images of these transversals under 0 are the same modulo kN. 

In particular e(T), @(T+ kN), &T+ 2kN), . . . , @(T+ n - kN) are congruent trans- 
versals modulo kN and for every ic T, 9(i), @(i + kN), . . . , i&i+ n - kJ differ by 
multiples of kN. Since $ is l-l there exists a permutation o; of (0.1, . . . ,n/k,~} such 
that @(i+ AkN) = @(i) + aj(A)kN. A similar argument applies to the successive trans- 
versals T+ 1, T+ 2, . . . , Tc kN_, - kN_2 + ..a + k, - 1, showing that the restriction of 
@ to [0, kN- l] defines a perfect permutation cp of Z& such that p(i)=@(i) 
modulo k,,,. In the formula above giving @(i+ AkN), we may eventually modify the 
permutation oi so that $(i + IkN) = p(i) + ai(A)kLv. 

N odd. In the basic transversal T={O,k,,2k,,...,n-kN+...+k2-k,) we con- 
sider the following intervals: 

10 = [O, k, ,..., k~_~-k~_~+...+k~-k,], 

I,=[kN,kN+k, ,..., kN+kN-3-kN-4+...+kz-k,], 

Z~n,kN)_,=[n-k,v,n-kN+k,,...,n-kN+kN-3-kN_4+...+kZ-k,]. 

These are n/kN intervals of T of a certain length I (in fact, I=(kAV_j/kN_4) ..a 
(k4/k3)(kZ/k,)), extracted from a subdivision of T into intervals of equal length I. 
For example, between IO and I, there is a gap consisting of IO + kN_2, f. + 2k,,,_ 2, . . . , 
IO+ kN_, - kN_2. Forming successively the transversals T+ kN- kN_, + kN_*, 
T+k,.,-kN_,+2kN_2,..., T+kN-kN-,+(kh.-,-kN-2)=T+kN-k,V_2,T+kN=T, 
we obtain kN_ ,/kN_2 distinct perfect transversals having the n/kN intervals above 
in common. For example, (Io+kN-,-k,V_2)+kh:-kN_,+kN2=ZO+kN=Z,. It 

follows that J= @(ZoU I, U .** UlnlkN- ,) consists of I. n/kN elements belonging to 
kN- ,/kN_2 distinct perfect transversals of the partition of Z,. However IO itself 
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appears in exactly kN-l/kN_2 distinct transversals of the corresponding par- 
tition of i&.. Hence by (b) of Proposition 1.1, J consists of 1 representatives of the 
classes of the partition of ZkN together with all their translates by multiples of kN. 
Similarly all the intervals 10+,ukN-t,II +r(lk,~-~, . . . ,I~n,k,Vl_I +pkN-2 are globally 
mapped by 6 onto sets that are invariant under addition of multiples of kN. Thus 4 
defines a perfect permutation Q (after reduction modulo kN) of each set [0, kN- I], 

[kN,2khi-ll,...,In-kN, n - 11. It remains to show that v, is the same on each of 
these intervals. Proceeding by induction on N, the permutation v, on [O, kN- I] maps 
the set of all multiples of k2 onto a set of elements that are congruent modulo k2. 
Since any perfect transversal of the partition of Z, is determined by its restriction to 

10, kN - l], Q has the same property than p with respect to the multiples of k2. Hence 
we may assume that 4 maps the set of all multiples of kz onto themselves, in such a 
way that if T’= (0, k3, 2k3, . . . , n - k,}, then @(T’+ sk2) is a perfect transversal for all 
s. Thus @ defines a perfect permutation corresponding to the sequence 

By the induction hypothesis for any two multiples i, j of k2, i=j module kN implies 
g(i) = g(j) modulo kN, and the same holds true for any pair i, j such that i=j 
modulo kz. This shows that @ defines the same perfect permutation on each set 

[O, k,v - l],[kN,2kN-l],...,[n-kN, n - l] and completes the proof of Proposi- 
tion 1.2. 

The basic modulus of the sequence kl 1 k2 1 .a- 1 kN) n is defined to be kl if kl f 1 
and kz otherwise. 

Corollary 1.3. Let @ be a perfect permutation of E, corresponding to the sequence 
k, 1 kz 1 a-. 1 kN 1 n of basic modulus k. The following conditions on @ are equivalent: 

(1) $3(O) = 0 and g(i) 1 i - 1 for every i, 1 I i< n, 
(2) $ induces a permutation QE Yk such that a(O) =O, a(i)? i- 1, and 

@(i+ Ik) = a(i) + lk for every i,Oli< k, andfor every A, 0~1 <n/k. 

Proof. It is clear that (2) implies (1). Assume that @ satisfies (1). Following the 
notation of Proposition 1.2 we have @(i+ lkN) = (p(i) + ai(l)kN for every i= 
O,l, . . . . kN-1, A=O,l,..., n/kN- 1, and v, a perfect permutation of Z,. Con- 
sequently 

i+Ak,-- 1 I@(i+AkN)SkN- 1 +o;(L)kN. (1.3.1) 

It fOllOWS that [A -ai(&]kNI kN--i. IIl Case i>O, this implies [A - o;(A)]kN<kN, 
hence I - o;(L) SO, or A 5 ai( forcing L = ai for every L. In case i = 0, we obtain 
similarly o,,(L) 2 L - 1. However, @(O) = 0 implies p(O) = 0 and se(O) = 0. Hence for 
i = 0 the first inequality (1.3.1) becomes LkN - 1 I a&)kN. In case kN # 1 this gives 
(A - 1)kN < AkN - 1 I aO(l)kN, and thus a&) > A - 1. Again this forces a&) = A for 
every 1. Consequently @ restricted to [0, . . . , kN - l] is p, a perfect permutation of 
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Zky satisfying the conditions (1). By induction on N, (2) follows from the fact that 

the perfect permutations of i& corresponding to the sequences k or 1 1 k are all the 
permutations of 0, 1, . . . , k - 1 and for these, (1) and (2) are obviously equivalent. 

2. Amalgamation of automata 

Given a collection of pairwise disjoint non empty sets S; (i E I) with a distinguished 
element sp in each set S;, we call amalgamated sum of the sets Si the set 
S= *_, (S,sp) defined by S= ]U,,, (Si- {$})I U {sc} where so denotes an element 
not in any of the sets Si (ie I). Thus the amalgamated sum is simply the set obtained 
by forming the union and merging the distinguished elements in each set into a 
single element denoted by so. 

Let 9li=(Si,J;:),i= 1,2, . . . . n, be a family of finite state A,?-automata with pairwise 
disjoint sets of states Si and input alphabets Ai, the functions A : Si x/Ii-* Si being 
the usual transition functions. We assume that in each set Si and initial state SF has 
been distinguished, and that we are given a collection of functions (pu : Six Aj +Sj 

such that 

(1) Pii=fi; 

(2) pg($, Uj) =fi(.$, Uj) for every i, j = 1,2, . . . , n, and for every Uj E Ai. 

We define the amalgamation *:=, (2li,qv) of the automata 9li as the automaton 
?.l=(S,f) over thealphabet A=U:=, A,,, having the amalgamated sum S= *,“=, (SiJp) 
of the sets Si as set of states. The transition function f is given by 

f(si, Qj) = PQ(si, aj) and f60, Uj) = CO~CSP, aj) 

for every i, j, and Uj E Aj. 

A simple example of an amalgamation of automata can be obtained as follows: Let 
%=(S,f) be an A+-automaton with initial stateso. For every a E A, consider the {u}+- 
automaton ?lI,= (S, f) with initial state so. The amalgamation % = )ICoaA (Yl,, v,;~,) 
with ~~i~,(Si, Uj) =f(s, Uj) for every pair Ui, Uj E A yields an A +-automaton covering II 
(in fact ?I and 8 have the same transition semigroup). 

If each !?li=(Si,fi) (i= 1,2, . . . . n) is the minimal At-automaton recognizing the 
languages CT (CT = stabilizer of sp in At) where each Ci is a complete prefix code, 
then each 2[i is a transitive automaton, and the same is true for any amalgamation 

% = *,!‘=, !?li. Hence the stabilizer of SO in A+, with A = U:=, A;, through l3, is itself a 
complete prefix code. We shall use this process to construct prefix codes C such that 
Synt(C+) is a union of groups from elementary codes (i.e. codes C such that 
Synt(C+) is completely simple [6]). 

3. Domination of team tournaments, and main result 

We recall (see [6]) that a team tournament Y(n, k) is a graph composed of k chains 
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T,, T-2, . . . . Tk, each chain, called a team, has n - 1 vertices 

T,=(+-+c+.-+c~_,~ (ISilk), 

and the arrows between vertices in different teams satisfy the following axioms: 
(1) For every i, 1 5 is k, there is no arrow directed to cl; 
(2) For every i, j, m, i# j and m # I, there exists a unique I, I_cm, such that cl -+cA 

is in .7(n, k); 
(3) .Y(n, k) has no closed path. 
To each tournament .F(n, k) one associates an automaton U.X(n, k) on an alphabet 

A = {a,,az, . . . , ok} in bijection with the set of teams. We put U.?Jn, k) = (S,f) with 
S=(Uf=, T;)U{O>, f(O,ai)=c{, and 

f(Cl* Qj) = 
CL if c;d CA is in .F(n, k), 

0 otherwise. 

In the terminology of Section 2, !?.W(n,k) is an automaton obtained by 
amalgamation of k n-cycles using connecting functions (pii : (0, 1, . . . , n - 1) x { aj) -+ 
{O,l,...,n- 1) such that 

if c;+ci is in .F(n,k), 

(i.e. (pii induces a non-decreasing permutation on (0, 1, . . . , n - 1)). 
In [6] it was shown that it is possible to define a product of team tournaments by 

juxtaposition of graphs after insertion of k intermediate points. The product 
.F(n, k) a .Y(n’, k) is of the type .F(n + n’, k). Furthermore %.F(n, k) admits a con- 
gruence identifying the states cf and & whenever I+ m modulo d, if and only if 
n = dq and .F(n, k) = [.F(d, k)]q. 

Definition 3.1. A team tournament f(n,k) dominates a team tournament 
Y(m, I) with respect to a factorization of (1 -x*)/(1 -x) given by the sequence 
ktIk21~~~Ik,.,]nifandonlyif: 

(1) S.Y(n, k) admits a congruence modulo d, where d (=k, or k2) is the modulus of 
the sequence kl 1 k2 1 -.- ) kN ) n. 

(2) m is the product of the consecutive quotients kz/kl, k4/k3, . . . . kz;/kzi_I, . . . 
with kli I n. 

Referring to the notation used at the beginning of Section 1, let (1 - x”)/( 1 -x) = 
p(x)q(x) be the factorization defined by the sequence k, ) kz) --+ 1 kN ) n. This factori- 
zation defines a partition ni of each subset T;U (0) of Y(n, k) whose classes are the 
various sets Ci(t) = (cl: m EA + f ), as t runs through the set T of exponents of 
q(x)(A is the set of exponents of p(x)). With respect to lower indices of elements of 
TiU (01, Xi is a perfect partition admitting the set ri = (CL: m = n -t + 1 and te T) 
as a perfect transversal. We call ni [resp. ri] the standard partition [resp. transversal] 
defined on T by the sequence ki 1 k2 ( +.- 1 kN 1 n. 



In order to construct an amalgamation 2l Y(R, k) *‘U.~(Q I) we need two functions 

9:SxB-S and v:SxA+S, whereA={a,,az ,..., ak}, B={bl,bz ,..., 6,) are the 

respective alphabets of U.F(:(n,k) and U.Y-(:(m,f) and S and S their respective set of 

states. For every pair i, j, 1 I is k, 1 cjc I, we consider functions Plj : TjU {0} * 

qU{O} and a,;: qU{O}-T,U{O) such that Ker P,,=n;, Plj onto, and Ima,,= 

r,, a,; one-to-one, and define 9 and 9 by 

9(ck, bj) =PI,(~LI), W(C:, a,) = aj;(c:). 

The second condition on amalgamating functions imposes additional conditions on 

the functions 0,: 

Pii = C:(=9(o~ bj))9 a,i(O) = Ci(= W(O, a;)). 

Any amalgamation !X.F(-(n, k) *U.T(m, I) constructed as indicated above (where 

.F(n, k) dominates .X(-(m, I) with respect to a factorization of (1 -x”)/( 1 -x) defined 

by some sequence k, 1 kz / -.. 1 kN 1 n) will be called a standard amalgamation. 

Theorem 3.2. Any standard amalgamation Yl.F(n, k) *%.F(m, I) of two automata of 
team tournaments S!l.F(n, k) and 9l.Y(m, I) is an automaton such that the stabilizer of 
0 is C+ where C is a complete prefix code and the syntactic semigroup of C’ is a 
union of groups with one or two P-classes. If the only closed paths in the state graph 
of !!l.F(n, k) * YM(m, I) are those containing 0, then C is finite. Conversely, any finite 
prefix code C such that the syntactic semigroup of C’ is a union of groups with two 
L/-classes is obtainable as the basis of the stabilizer of 0 in a standard 
amalgamation of two automata of team tournaments. 

Example 3.3. Diagram 3 shows a standard amalgamation 91X(12,1) *2l.F(4,1) with a 

factorization of (1 -xt2)/(I -x) given by the sequence 1) 2 16) 12, i.e. 

1 -XI2 
I_x=(l +x2+x4)(1 +x+x6+x’). 

Weput T,={l,2,..., ll}, T,= {i,f?,g}. The partition x1 of r,U{O} is 

0 2 411 3 516 8 1017 9 11. 

The corresponding perfect transversal rI is 12 - T+ 1 modulo 12 with T= (0, 1,6,7}, 

i.e. rI = T. With {a} and {b) being the respective alphabets of ‘1?l.=T(12,1) and 

%X(4,1) we have chosen an amalgamation defined by 

9(0, b) = 9(2, b) = 9t4, b) = 1, w(O,a)= 1, 

9(l,b)=9(3,@=9(5,b)=Z w(i, a) = 7, 

(~(6, b) = 9(8, b) = (~(10, b) = J, ~(2, a) = 6, 

9(7,b) = 9(9,b) = 9(ll,b) = 0, 9(3, a) = 0. 
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Diagram 3 

4. Proofs 

The direct part of Theorem 3.2 will follow from the next lemma, where we study 
perfect transversals on the subsets ir,U (0) of ti.Y(n, k). Given a factorization of 

Z, defined by k,)kzI.-.IkN/n, any transveral of the type T+s where 
T=(0,k1,2kl ,..., kz-k ,,... } will be referred to as a transversal of type T. 
Similarly, subsets of &U (0) of the form { cj : Jo T+ s for some s} will be called 
transversals of type T in c U (0) (convention: 0 is identified to CA). 

Lemma 4.1. If ‘%Z(-(n, k) admits a congruence modufo d, where d is the modulus of 
the sequence k, 1 kz ( --a ) kN 1 n, then for every i, j, 15 i, jl k, any transversal of type 
T in 7, U { 0) is mapped by aj on to a transversal of type T in q U { 0). 

Proof. For every pair i,j let (p,> : Z,, 4 Z, be defined by 

$$4) = 
m-l ifcf*cAisin .T(n,k), 

n-l otherwise. 
(4.1.1) 

Viewing ti.Y(n, k) as an amalgamation of k n-cycles the functions q~,> are related to 
the connecting functions qij by pi(l) = pu(/, Qj) - 1 (mod n). We have p,>(O) = 0 and 
v,>(f)? I- 1 for every I, Osl<n. Since 2lY(n, k) admits a congruence modulo d, 
there is a permutation o E &such that o(O) = 0, o(l) z f - 1 and p&i+ Ad) = a(i) + Ad 
for every I, O~l<d and for every 
of Z, mapping every transversal 
transversal of type T. 

A, 0 I I <n/d. Hence p,> is a perfect permutation 
of type T onto a transversal of type T onto a 

Lemma 4.2. The transition semigroup of a standard amalgamation 

g.Y(n, k) * ti.T(rn, f) of two automata of team tournaments is a union of groups with 
one or two L?-classes. 

Proof. A and B being the input alphabets of %.Y(n, k) and UY(m, I) respectively, in 
order to prove the lemma it suffices to show that 
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(1) any word w EA + defines a transformation of rank n and having an image 
which is a cross-section of its kernel; 

(2) that any word WE (A UB)+ with at least one occurrence of a letter of B has 

rank m. 
In case m = n it will follow that the transition semigroup of the amalgamation will 

be completely simple (union of groups with one P-class). In case m<n, all the 
transformations defined by words containing at least one occurrence of a letter of B 
form the minimal ideal of the amalgamation (transformations of minimal rank), 
and the transition semigroup has two multiplicatively closed P-class. 

The assertion (1) above follows from the fact that all the transformations defined 
by w E A + have their images in (U:=, T;) U { 0) and we know that the transition semi- 
group of 2IY(n,k) is a completely simple semigroup. To prove (2) we proceed by 
induction on the length of w E (A U B)+. In case I(w) = 1, w = bj for some bj E B. But 
Im bj = CU (0) is a cross-section of Ker bj since bj is a transformation defined by 
the team tournament .T(m, /). 

Assume that all words of length less than the length of w, and containing at least 
one occurrence of a letter of B, define a partition of type n on each set T;U (0). the 
equality on each set Tj U { 0}, and have an image which is either a transversal of type 
Toroneofthesets qU{O}. Let w=w’zwithzEAUB. 

In case .~=a; for some ~;EA, w’ has the properties mentioned above. If Im W’G 
Im aj for some aj EA, then Im W’ is a transversal of type T in TtJ (0) mapped by Ui 
on a transversal of type T in TiU (0) (Lemma 4.1). Since w’ defines a partition of 
type n on T;U {0}, it follows that Im w = Im W’Ui is a cross-section of Ker w = Ker w’. 
Thus rank w = rank w’= m. If Im w’= Im bj for some b, E A, then Im w is the perfect 
transversal ri (see the definition of IJ in the amalgamation) in Im a;, which is a cross- 
section of the partition defined by w’ on TiU (0). Hence rank w = rank w’= m. 

In case z = bi for some b, E B, either w’ contains at least one letter of B, or 
W’E A+. If w/contains a letter of B, then as above Im W’C Im aj or Im w’= Im bje In 
both cases bi maps Im w’ onto TU (0) and rank w =rank w’= m. If w’EA+, we 
write w’= ai,Uil*** Ui3 with ai,, . . . , ai,EA. By the induction hypothesis, a,2-a* aisbt 
defines a partition ni, of type R on T, U (0) = Im ai, admitting Im bi as a cross- 
section. Since the elements of Im bi are mapped by ai, into distinct classes of xi,, 
Im bi is a cross section of Ker W’bi = Ker w, and rank w = m. 

In the next series of lemmas we assume that C is a finite prefix code on a finite 
alphabet X and that the syntactic semigroup Synt(C+), isomorphic to the transition 
semigroup of the minimal X+-automaton %(C+) recognizing C+, is a union of 
groups. Since the minimal ideal of Synt(C+) is a completely simple semigroup, C is 
necessarily a complete code and W(C’) is a transitive automaton. We denote by 0 the 
state of 2I(C+) whose stabilizer is precisely C’. 

We recall that in a transformation semigroup which is a union of groups, each 
transformation defines a permutation on its image. In case this transformation 
semigroup is the syntactic semigroup of C+ where C is a finite code on X, each 



214 G. Lailemenl 

XEX induces a transformation on the set of states of ZI(C+) which is a cycle contain- 
ing 0 (see [5], Prop. 1.2, Ch. 8). We shall write 

( 
so S’ *-* h-2 S"-I 

X= 
1 2 n-l 0 > 

with in Si for every i, 0 = is n - 1, U:l,’ Si being the set of states of ti(C+), and call X 
a cyclic transformation. ’ 

Lemma 4.3. Let 

so SI a*- s,_, Ro RI ..a R,,,_, 
X= 

1 2 --* 0 > 
and y= 

r, r2 .*a 0 > 

be two cyclic transformations. If x and y generate a union of groups then the equi- 
valence Ker y [resp. Ker x] restricted to Im x (resp. Im y] defines a perfect partition 

of this set. 

Proof. Assume that Im XC ReU Ri, U *** U Ri,_, with Im XII RG #0 for every ij. We 
shall prove that the set 

is a perfect transversal of the partition defined by y on Im x. Since y =ymc *, ym 
is an idempotent transformation mapping 0, ri,, riz, . . . , r,,_ , onto themselves. Thus 
Imxy”={O,r,,,r, *,..., ri,_,}, and T=Imxy”‘x”. For every f~l, XYX' implies 
xym4/ x’y* hence Im xy”= Imx’y”’ is a cross-section of Ker x’ytn. Consequently, if 
rGx’y = ri,x’y then with a, /3 such that axym= ril, pxy”= rc we obtain oxy’“x’y = 
pxymx’y, hence (t~xy”)x’v” = ( j3xym)x y ’ m. Since Im xym is a cross-section of Ker x’ym, 
the last equality implies oxym=Bxym or rG = rik. Thus for every integer /Z 1, the 
elements OX{ ri,x( . . . , ‘it_, x’ are in different classes of the partition induced by y on 
Imx, showing that T is a perfect transversal for this partition. 

Any partition of the set {0,1,2, . . . , n - 1) admitting a perfect transversal T is such 
that for any class r of the partition we have Z,=r@ T. It follows that the 
cardinality of T (I in the proof of Lemma 4.3) divides n, and all classes have the 
same size. 

Lemma 4.4. Let CcX+ be a finite prefix code such that Synt(C+) is a union of 
groups. Then for every x, YE X, viewed as transformations of the minimal 
automaton %(C+) of C+, at least one of x or y has a kernel which is the identity 
when restricted to the image of the other. 

Proof. If Ker x and Ker y are not the identity when restricted to Im y and Imx 
respectively, then with the notation of Lemma 4.3 there exists rj E R, and io Si such 
that Ox=rjx= 1 and Oy=iy=r, (ri#O and i#O). It follows that lxi-‘y~x=Oxiy~x= 
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iyjx= rjx = 1, and none of the left factors of xi- ‘y/x maps 1 onto 0. Thus if u E X+ 
is the shortest word such that lu = 0, we have x(x’- ‘yJx)‘u E C for every 1 L 1. This 
contradicts the finiteness of C. Thus at least one of x or y induces the identity on the 
image of the other. 

Corollary 4.5. If x and y are as in Lemma 4.3 and Kerx restricted to Im y is the 
identity, then the perfect partition defined by Ker y on Imx admits a transversal 
with m = rank y elements. 

Proof. Since rank yx= rank y we have yx R y. But in a finite union of groups xy 
and yx are i/-related (since xyxy _~‘xy implies yx 9 xy). Thus rank xy = rank yx = m, 
and Im x meets all the classes of Ker y. It follows that the transversal T of the proof 
of Lemma 4.3 has exactly m elements. 

In case both Ker x and Ker y induce the identity on Im y and Im x respectively, 
then the subsemigroup of Synt(C+) generated by x and y consists of mappings 
having all the same rank. Since Synt(C+) is a union of groups, this semigroup is a 
completely simple semigroup (cf. [l]). More generally, if Y denotes the subset of all 
the letters of X defining transformations on the set of states of 2I(C+) such that 
all have the same rank, then the action of Y on the set U.,, r Im y defines a 
Y+-automaton; the stabilizer of 0 in this Y+-automaton is D+= C’ fl Y+, Synt(D+) 
is completely simple hence D is an elementary biprefix code [6]. The main theorem 
of [6] states that DC can be obtained as the stabilizer of 0 in the automaton of a 
team tournament. Consequently C+ itself can be obtained by an amalgamation of 
team tournaments of various lengths. We shall prove that in case Synt(C’) has two 
I/-classes, C+ is obtainable by a standard amalgamation of two team tournaments. 

Lemma 4.6. Let Cc X+ be a finite prefix codes such that Synt(C+) is a union of 
groups. Assume that the cyclic transformations defined by x, y E X as in Lemma 4.3 
are such that Ker x restricted to Im y is the identity. Define two subsets T and K of 
Im x as folio ws: 

T={i~Imx:ix~(Im y)x}, K={kEImx:ky=Oy}. 

Then the sets K and T= n - T (modulo n) form a factorization of the set 0, 1, . . . , n - 1 
(i.e. every a, 0 I a in - 1, can be written uniquely a = k + i with k E K, 7~ f). 

Proof. By Lemma 4.3 and Corollary 4.5, Ker y restricted to Im x defines a perfect 
partition on Imx having T as perfect transversal and K as the class of 0. By 
Proposition 5.3 of Chapter 3 in [5], H,=K@ T, hence H,=K@T. It remains to 
show that this last factorization does not need any reduction modulo n. For every 
k E K, ky = Oy = r,. It follows that for every i E T, if 0, we have k < i. Indeed, if k >j 
for some non-zero Jo T, let r/E Im y such that rtx=jx. Then xky’xk-j is a proper 
left factor of a word in C. Hence there exists u E X* such that xky’xk-ju E C and 
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since ky’xk-j = k we also have xk( y’xk-j A ) DE C for every A ~1 contradicting the 
finiteness of C. Thus kli for every i#O, in T, and the inequality is in fact strict 
(k<i) because KnT=(O). From k-i<0 (for i#O) we deduce O<k+(n-i)cn, 
showing that K@ 7 is a factorization of the set { 0, 1, . . . , n - 1). 

As indicated in Section 1, the factorization K@ f above is given by a sequence 
k,lk21.-.lk,,In. W e now proceed to show that if xlrxZ, . . ..x/ have the same rank, 
and if yI, y2, . . . . yk of the same rank are such that any xi induces the identity on 
Im y,, then the corresponding factorizations K;@ q are all the same. 

Lemma 4.7. Zf x,,x2E X define two cyclic transformations of the same rank and if 
Ker x1, Ker x2 restricted to Im y is the identity, then the two factorizations induced 
by y on Im xt and Im x2 are identical. Similarly if y,, y2 E K define two cyclic trans- 
formations of the same rank and if Kerx restricted to Im y1 and Im yz is the 
identity, then y, and y2 induce identical factorizations on Im x. 

Proof. (a) The factorization induced by y on Imxl [resp. Imx2] corresponds to a 
polynomial decomposition 

with 

1 -x” 
I_X =pt(x)qt(x) [resp. =p2(xh2(.91 

pi(x)= 1 +xki+xk2+ ***+x+1, q,(x)= 1 +x’1+x’*+ *.* fX’“_’ 

[resp. p2(x) = 1 + xKl + xg2 + . ..+x”x-I. q2(x)= 1 +Xrl+X’2+ ***+x5-l]. 

Writing x1,x2, and y as cyclic transformations, we have 

Y= 
> 

with {0,kl,k2 ,..., kq_,,R1,R2 ,..., R,- ,) G Ro, and 0, rlrr2, r,n_I are distributed in 

the classes SO,&_,,_,, . . . . S,_t,ofKerx,,andintheclassesSo,S,_,r_,,...,S,_,,of 
Ker x2. 

But x1x2 and y generate a union of groups. Thus the class of 0 module Ker y 
restricted to Imx,x2= Imx2 and the transversal on Kerxl form a factorization of 
Z,. Hence pi (x)q2(x) = 0 modulo (1 - x”)/( 1 -x). Similarly, considering x2x1 and y 
we obtain p2(x)ql(x) = 0 modulo (1 -x”)/( 1 -x). Thus 

pi(x)qAx) = k(x)pt(x)ql(x) and pAx)qi(x) = 4x)pAx)qAx). 

Since the polynomials p;(x), qi(x) have coefficients 0 and 1, this implies pi(x) =JQ(X) 

and q!(x) = qz(x). 



(b) In case yl,yz have the same rank and Kers is the identity on Im _v,, and 
Im yz, a similar proof, using the fact that ylyZ and _vIyI define perfect partitions on 
Im.u, shows that yl and yl induce identical factorizations on Im x. 

Lemma 4.8. Assume that xl, . . . ,x2, . . . , xk define cyclic transformations of the same 
rank n, and let II./(n, k) be the automaton of the team tournament defined on theset 
IJf=, Im x,. Assume that y E X defines a cyclic transformation such that for every 
i, Ker x, is the identity on Im y and the factorization induced by y on Im s, is given 
by thesequences=kl)kz...Ikh./n. If x1,x 2, . . . . . xk, y generate a union of groups 
then 2M(n, k) admits a congruence modulo d, where d is the modulus of s. 

Proof. Considering the subtournament of % T(n,k) on the two letters .Y~,.Y~, (for 
example) and using the notation of Section 3 we define 9: B,-Z, by 9(O) =O, 
9(l)=m-1 ifc\*c,,, * is in .F(n, k) and 9(l) = n - 1 otherwise (cf. 4.1.1). By definition 
of a tournament 9 is a bijection satisfying 9(O) = 0, 9(l) 2 I - 1. Furthermore, if T is 
the transversal of the sequence s, we claim that for every i,9(T+ i) is a perfect 
transversal of the partition defined by s. Indeed, considering y,~;x~, we observe that 
Im yx{ is T+ i. Since x~,x~, y generate a union of groups 9(T+ i) c Im x2 is a perfect 
transversal of the partition defined by Ker y. Thus 9 is a perfect permutation of Z,. 
By Corollary 1.3, 9 is a repetition of a permutation o on 0, 1, . . . ,d- 1 such that 
a(O) =0 and a(i)ri- 1 for Oci<d- 1. Hence ‘U.F(n, k) admits a congruence 
modulo d. 

The proof of the converse part of Theorem 3.2 can now be completed. If C is a 
finite prefix code such that Synt(C’) is a union of groups with two Y-classes, then 
the set of letters defining transformations of the higher rank and of the louver-rank 
act as two automata of team tournaments %.F(n, k) and g.F(m, I) respectively. By 
Lemmas 4.6, 4.7 and 4.8, X(n, k) dominates .Y(m, I). Lemma 4.6 shows that the 
automaton 2I(C+) is obtained by a standard amalgamation %.F(n, k) * 2L T(m,I). 
Since C is finite the only closed paths in the graph of this amalgamation are those 
containing 0 (and conversely). 

5. Remarks 

(a) It has been shown in [4] that all the finite prefix codes C such that Synt(C+) is 
a union of groups and has a non-trivial group of units are obtainable from decreas- 
ingsequencess,=(l In)>s2>.-- >s, of chains of divisors of n (where n is the order 
of the cyclic group of units of Synt(C+)). The partial order relation on chains is 
defined as follows: (k, 1 k2j *.* 1 kM 1 n)r(l, 1 I2 1 ..* j I,V I n) if and only if for every 
i, 152jlZV+ 1 there exists i, 112iSM+ 1 such that k2,_lI I,_, 1 l2j / kzi. For 
example the sequences of divisors of 12, 

Sl =(l 1 1% s2=(l 12141 I2), s,=(4112) 
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satisfy sI >s2>s3. The corresponding transformations 

a=(O, l,..., ll), b=(032 1143 1476 (5*’ 181110 19 oil), 

I 2 3 4 5 6 7 8 9 10 4 8 0 11 > 

generate a transformation monoid Synt(C+) with 3 completely simple Y-classes (C 
is the basis of the stabilizer of 0). 

We conjecture that the results above extend to amalgamations of more than two 
automata of team tournaments, with appropriate modifications concerning the 
existence of congruences on these automata. 

(b) The codes investigated in [4] were shown to be decomposable (except for 
group codes of order a prime, or synchronized codes). The wider class explored in 
the present paper allows to construct non trivial examples of nonsynchronized 
indecomposable codes as shown by the code C in Example 3.3. It is easy to check 
that the minimal automaton recognizing C’ is congruence-free which is equivalent 
to C being indecomposable ([5] Th. 5.6, Ch. 8). The same code provides also a 
counterexample to a conjecture of D. Perrin [7], stating that if the degree d of an 
indecomposable code C is a power of a prime then &‘E C for every a E A. As pointed 
out in [B] these types of codes are natural candidates for the study of factorizations 
(in non-commuting variables) of the type C- 1 = P(A - 1)Q. 
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