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A semigroup S is called a union of groups if each of its elements lies in a (maximal)
subgroup of S. It is well known that in a union of groups Green’s relation ¢
(defined by a #b if and only if SaS=SbS) is a congruence whose classes are
completely simple subsemigroups of S and such that S/¢ is a semilattice (i.e.
satisfies x2=x, xy =yx) [1].

In this paper we present a construction of all unions of groups S having the
following properties:

(1) S is the syntactic semigroup of a language of the form C* = UDO C", where C
is a finite prefix code;

(2) §/¢ is the two-element semilattice.

Using the terminology of Clifford and Preston the semigroups studied here are ideal
extensions of a completely simple semigroup by another, or unions of groups of
height two. All the completely simple semigroups satisfying condition (1) above
have been obtained in [6], using the concept of team tournament. All unions of
groups S satisfying (1) and having a non-trivial group of units are constructible
using certain factorizations of Z,, the group of integers modulo n [4]. The two
construction techniques are combined here to give all the unions of groups satisfying
(1) and (2) as transition semigroups of what we call a ‘standard amalgamation’ of
the automata of two team tournaments (Theorem 3.2).

It is likely that the process given here generalizes to a construction of all unions of
groups satisfying (1) provided some convenient representation of the two Z-classes
case is found. We conjecture that all these semigroups are chains of length n of
completely simple semigroups, and that they are — in general — of group complexity
n, in the sense of J. Rhodes [3] (cf. also Tilson’s Chapter 12 in [2]). The complexity
conjecture, at least in the case n=2, can be verified on examples using the results
of [11].

Directly related to these considerations is the problem of describing the variety »
of all languages whose syntactic semigroups are unions of groups (see [2], [10]). In
view of the recent results of J.E. Pin [9], the following question arises naturally: Is

* Partially supported by NSF, Grant MCS 8001558.

0022-4049/82/0000-0000/$02.75 © 1982 North-Holland



204 G. Lallement

¥ generated by its finite prefix codes (i.e. is it true that » is the smallest variety
containing all the languages C* where C is a finite prefix code, and the syntactic
semigroup of C* is a union of groups)? Our results are the initial steps toward
an answer.

The first section of this paper contains preliminary results on factorizations of Z,
and a determination of certain permutations of Z, preserving a transversality
property. In Section 2 we define the notion of amalgamation of automata. This is a
simple construction creating an automaton on the disjoint union of the sets of states
of others, merging all initial states into a single one. Section 3 contains our main
result; The unions of groups satisfying (1) and (2) are the transition semigroups of
the automaton obtained by an appropriate amalgamation of automata of team
tournaments. The proofs are presented in Section 4,

We recall that given a language L in A* (i.e. a subset of the free semigroup 4+ on
the set A), the syntactic semigroup Synt(L) is defined as the quotient of A* by the
congruence Z(L)={(n,v)e A* X A*:xuyel « xuyel, for every x, ye A*}. For
other undefined terminology, we refer the reader to [1], [2], or [5].

1. Perfect transversals for certain factorizations of Z,

An equivalence relation g on Z,, is called a perfect partition if ¢ admits a system of
representatives 7 such that 7T+ i (modulo n) remains a system of representatives of
for every i. The set T is then called a perfect transversal, and one can show that the
class of 0 modulo g, say K, together with T form a factorization of Z, in the
following sense: Every xe Z, can be written uniquely x=k+¢ with ke K, te T (see
[4]). Since the problem of finding all factorizations of Z, is open, the same holds for
finding all the possible perfect transversals of Z,. However, among the factoriza-
tions of Z, there are factorizations Z,=K@® T that do not require any reduction
modulo n. They are called factorizations of the set {0,1,...,n~1}, and are all
obtainable as follows:

Let ky| ky| -+ | kx| n be a chain of divisors of n (| reads ‘divides’, and k< k<--- <
kn<n with k; possibly being 1). Form the polynomials

1 —xk1 1 —x*k3 1 —xk2 1 —xk

1-x 1—x* 1—xf11—xk

plx)=

Then (1 - x*)/(1 —x) =p(x)q(x), and {0,1,...,n— 1} =K@ T where K [resp. T] is the
set of exponents of the terms of p(x) [resp. g(x)]. Furthermore, since

ll_f:zp(x)[q(x)x"] modulo (1 —x"),

T is a perfect transversal of the partition 7 whose classes are the various subsets
K+t, teT. We shall say that n is the perfect partition defined by the sequence
k(| ky| -+~ | kn|n. Besides the basic transversal T defined above, we propose to find
all the possible perfect transversals of 7.
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Proposition 1.1. Any perfect transversal T of the partition of Z, defined by the
sequence k| ky| -+ | kx| n is obtainable from a perfect transversal T’ of the partition
of Zy,, defined by the sequence k| ky|--- | kn_,| kn as follows:

(@) Incase Niseven, T={t'+ Akn:t'e T’ and A arbitrary};

(b) Incase Nisodd, T=\], ,(T'+ k).
Proof. We denote by n [resp. n’] the partition of Z, [resp. Z,,] defined by the
sequence k| | ky| -1 ky|n [resp. k| k2| - [ kN].

In case N is even, each class of n is obtained from a class of n’ by addition of
kn, 2Ky, ... n—ky. Diagram 1, where the rows are the different classes of , shows

the relationship between 7 and n".

}
O l 2"'k|—1 A (kN-l_kN—-2+'"+kl—'1) :
k| ki+1 :
: : I
(knv—ka_y1+ -+ ky—ky) kn_) ']
i
[
{ kN (ﬂ—kN+kN_|—"'+k1—l)
|
|
|
I n—1
|
Diagram 1|

Since N is even each class of n is globally invariant under the addition of ky
(modulo n). Hence every perfect transversal 7 of n gives by reduction modulo ky a
perfect transversal T of n’. Conversely, when adding to each element ¢’ of a perfect
transversal 7' of n’ an arbitrary multiple of k» we obtain a transversal T of n. For
every i, the elements of T+ are distributed in the same classes as their residues
modulo ky, that is as the elements of 7'+ . Since T’ is a perfect transversal, the
same holds true for 7.

In case N is odd, the classes of n are those of n’ and their translates by multiples
of kn as indicated by the rows of Diagram 2. Reduction modulo k&, shows that any
perfect transversal T of m induces a perfect transversal T’ of the partition n". Also T
induces transversals on each classes of the blocks [ky,2kn— 1], [2kn, 36N —1], ...,
[n—kn,n—1] that are perfect when reduced modulo k. The assertion in (b) is that
these transversals are precisely 7'+ ky, T’ +2kn, ..., T'+n—kp.

To prove it we may assume (in view of the fact that T is perfect) that 0e T and
show that this implies &ku,2ky,...,,n—kx€ T. Proceeding by induction on N, we
consider the set S of all multiplies of k,. The partition = defines a partition ngon S
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0 1 2"'k1’1 v (kN_kN—l+'"+kl—l)
ky
(kn_y—kn_y+ - +ks—1) kn=1
ky ‘
kn+k |
(n—kN+kN-1—---+k2—k,) n-1 ‘
Diagram 2

admitting a transversal 7N S which remains a transversal when adding multiples of
k,. Hence the classes of ng are obtained from a partition n” defined by the sequence

k3 kN n
ky ky | k2
by multiplying all elements by &,, and TN S is also obtained from a perfect trans-

versal T of this partition by multiplication by &,. By the induction hypothesis 7"
contains

kN ZkN n—kN
k2 kz yousy k2

’ ’

hence kn,2kpn,...,n—kneET.

Example. The sequence 3|6|12|36 defines the following partition of Zs4:

0 1 2 6 7 8
3 4 5 9 10 11
12 13 14 18 19 20
15 16 17 21 22 23
24 25 26 30 31 32
27 28 29 33 34 35

There are exactly 2 perfect transversals containing 0: {0,3,12,15,24,27} and
{0,9,12,21,24,33}.

Letting 7 be the basic perfect transversal of the partition of Z, defined by the
sequence k| k| --- | kx| n, we propose to find all the permutations ¢ of Z, such that
@(T+i) is a perfect transversal for every i=0, 1,.... We call such a permutation ¢ a
perfect permutation corresponding to k| k| -+ | kn | n.

We denote by .7 the symmetric group on the set {0, 1,...,k~1}.
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Proposition 1.2. Every perfect permutation ¢ of Z, corresponding to the sequence
ky| k|- | kn|n is obtainable by extending a perfect permutation ¢ of Zy,, corres-
ponding to the sequence ky|ky|--- | kn_ | kn as follows:

For every i=0,1,...,kn—1 choose a permutation ;€ #,,, and define ¢ by
P(J)=0(i)+0c,(Aky where A and i are the quotient and the remainder of the
division of j by ky, j=i+ Aky with0<i<ky.

Proof. ¢(j)=@(j') implies @(i)+oc(A)ky=0(i')+0c;(4')ky with an obvious
notation. Reduction modulo ky gives @(i)=¢@(i’), hence i=i’, and A=A". This
shows that ¢ is a bijection of Z,. Constructing any perfect transversal T of the
partition of Z, from a perfect transversal T’ of Z,,, by the formula (a) or (b) of
Proposition 1.1 a computation of @(7 + s) shows that it is a perfect transversal of the
partition of Z, for every s=0,1,...,n—1. Conversely assume that ¢ is a perfect
permutation of Z,. We consider successively the cases NV even and N odd.

N even. Every perfect transversal of Z, is obtained from a perfect transversal of
Z,, by adding arbitrary multiples of k5. With T the basic transversal, we observe
that in the transversals T, T+ kn_ |, T+ 2kn_y, ..., T+ (n — kxn_y), any two consecu-
tive transversals have a segment of length at least k5_; in common. Hence by
Proposition 1.1(b) the images of these transversals under @ are the same modulo k.
In particular @(T), §(T+ kn), (T +2kp), ..., ¢(T+n—ky) are congruent trans-
versals modulo k) and for every ieT,@(i), ¢(i+kpn), ..., ¢(i + n—ky) differ by
multiples of k. Since @ is 1—1 there exists a permutation g; of {0,1,...,n/ky} such
that ¢(i + Akn)=@(i) + g;(A)kn. A similar argument applies to the successive trans-
versals T+ 1, T+2,..., T+kn_1—kn_3+ -+ k-1, showing that the restriction of
¢ to [0,ky—1] defines a perfect permutation ¢ of Z,, such that ¢(/)=¢(/)
modulo k. In the formula above giving §(i + Aky), we may eventually modify the
permutation g; so that ¢(i + Aky) = (i) + g:(A)kn.

N odd. In the basic transversal T={0,k,,2k,...,n—kn+--+k;~k,} we con-
sider the following intervals:

Ly=[0,ky, ..., kny_3—kn_s4+ - +k,—ky],
Li=[kn,An+Kyyooos KNt KN 3= Knoat o+ ho—ky],
l(,,/kN)_,=[n—kN,n—kN+kl,...,n—kN+kN_3—kN_4+--'+k2—k1].

These are n/ky intervals of T of a certain length / (in fact, /=(ky_3/kn_4)
(ks/k3)(ky/ky)), extracted from a subdivision of T into intervals of equal length /.
For example, between Iy and I, there is a gap consisting of Jo+ kn_3, lo+2kn_2, ...,
Io+ky_y—kn_3. Forming successively the transversals T+ky—An_1+kn_2,
T+ky—kn1+2kn_2ye, THhkn—kn_1+Hkno1—kn_2)=T+kn—kyn_23,T+kn=T,
we obtain kn_/kn_, distinct perfect transversals having the n/ky intervals above
in common. For example, (lp+An_1—kn_2)thkn—kn_+hkn,=lg+kn=1,. Tt
follows that J=@(l,UIU---Ul,,, ) consists of /- n/kx elements belonging to
Kkn_-1/kn_ distinct perfect transversals of the partition of Z,. However I, itself
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appears in exactly kn_,/kn_, distinct transversals of the corresponding par-
tition of Z,,.. Hence by (b) of Proposition 1.1, J consists of / representatives of the
classes of the partition of Z,, together with all their translates by multiples of k.
Similarly all the intervals fo+uky_ 3, Iy +ukn_2, ..., Ln/kn) -1 + KN 2 are globally
mapped by & onto sets that are invariant under addition of multiples of k. Thus ¢
defines a perfect permutation ¢ (after reduction modulo kp) of each set [0, k5 — 1],
lkn>2kn—1), ..., [n—kp,n—1]. It remains to show that ¢ is the same on each of
these intervals. Proceeding by induction on N, the permutation ¢ on [0, k5 — 1] maps
the set of all multiples of &, onto a set of elements that are congruent modulo &,.
Since any perfect transversal of the partition of Z,is determined by its restriction to
[0, k5 — 1], @ has the same property than ¢ with respect to the multiples of &,. Hence
we may assume that ¢ maps the set of all multiples of k; onto themselves, in such a
way that if T’ = {0, k3, 2k3, ..., n— k3 }, then §(T" +sk,) is a perfect transversal for all
s. Thus ¢ defines a perfect permutation corresponding to the sequence

ks | ks

n

kn
ky’

ky

X

By the induction hypothesis for any two multiples i, j of k;,i=/ modulo ky implies
#(/)=@¢(j) modulo kn, and the same holds true for any pair 4 j such that i=j
modulo k,. This shows that ¢ defines the same perfect permutation on each set
[0, kn— 11, [kn» 2kn = 1), ..., [n—ky,n—1] and completes the proof of Proposi-
tion 1.,2.

The basic modulus of the sequence k| k;|---| kn|# is defined to be k; if k;#1
and k, otherwise.

Corollary 1.3. Let ¢ be a perfect permutation of Z, corresponding to the sequence
ky|ky| | kn|n of basic modulus k. The following conditions on § are equivalent:
(1) ¢(0)=0and p(i)=i-1 foreveryil<si<n,
(2) ¢ induces a permutation o ¥, such that ¢(0)=0, o(i)zi-1, and
(i + Ak) = a(i) + Ak for every i,0<i<k, and for every A, 0=A<n/k.

Proof. It is clear that (2) implies (1). Assume that ¢ satisfies (1). Following the
notation of Proposition 1.2 we have @(i+Aky)=9¢(i)+0o(A)ky for every i=
0,1,....,kny—1, A=0,1,...,n/ky—1, and ¢ a perfect permutation of Z,,. Con-
sequently

i+ k- 15+ Ak sky—1+0i(D)kn. (1.3.1)

It follows that [A —o;(A))ky<kxn—i. In case i>0, this implies [A — g, (A))kn<kn,
hence A — 6;(1) <0, or A <5(4), forcing 1 = g (4) for every 1. In case i =0, we obtain
similarly go(1)= A — 1. However, ¢(0) =0 implies ¢(0)=0 and o¢(0) =0. Hence for
i =0 the first inequality (1.3.1) becomes Akn— 1 <ago(4)ky. In case kn # 1 this gives
(A= Dkny<rky—1=<ay(A)ky, and thus go(4)> A — 1. Again this forces gp(4) =2 for
every 1. Consequently @ restricted to [0,...,ky—1] is @, a perfect permutation of
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Z,,, satisfying the conditions (1). By induction on N, (2) follows from the fact that
the perfect permutations of Z, corresponding to the sequences & or 1|k are all the
permutations of 0,1, ...,k — 1 and for these, (1) and (2) are obviously equivalent.

2. Amalgamation of automata

Given a collection of pairwise disjoint non empty sets S; ({ € I) with adistinguished
element s? in each set §;, we call amalgamated sum of the sets S; the set
S=4%_,(S,s’) defined by S=([J,,, (S:i— {s?1)1U {s,} where s, denotes an element
not in any of the sets S; (/ € /). Thus the amalgamated sum is simply the set obtained
by forming the union and merging the distinguished elements in each set into a
single element denoted by s,.

Let ¥, =(S,f),i=1,2,...,n, be a family of finite state A; -automata with pairwise
disjoint sets of states S; and input alphabets A;, the functions f;:S;xA4;— S; being
the usual transition functions. We assume that in each set S; and initial state s has
been distinguished, and that we are given a collection of functions ¢;;: §;xA4;~S§;
such that

M) vi=/is

() 0,60, a)=£i(s},a)) for every i, j=1,2,...,n, and for every a;€ A;.

We define the amalgamation *7_, (U;, ¢;;) of the automata ¥; as the automaton
A=(S, f) over the alphabet A = UL. A,, having the amalgamated sum S= %, (S;, 59y
of the sets S; as set of states. The transition function f is given by

fsia))=9(s,a) and  f(so,a;)= (PU(S?, a;)
for every i,j, and a;€ A;.

A simple example of an amalgamation of automata can be obtained as follows: Let
A=(S, f) bean A *-automaton with initial state sy. For every a € A, consider the {a}*-
automaton ¥,=(S, f) with initial state so. The amalgamation B =*,., Uy, ¢4,4)
with @g.4,(5;, ;) = f(s,a)) for every pair a;,a; € A yields an A "-automaton covering Y
(in fact A and B have the same transition semigroup).

If each U;=(S,, f}) (i=1,2,...,n) is the minimal 4] -automaton recognizing the
languages C;* (C;" =stabilizer of s?in A;) where each C; is a complete prefix code,
then each ¥, is a transitive automaton, and the same is true for any amalgamation
P = *_, A;. Hence the stabilizer of spin 4™, with A = U;’=l A;, through B, is itself a
complete prefix code. We shall use this process to construct prefix codes C such that
Synt(C*) is a union of groups from elementary codes (i.e. codes C such that
Synt(C*) is completely simple [6]).

3. Domination of team tournaments, and main result

We recall (see [6]) that a team tournament .7{n, k) is a graph composed of & chains
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T\, Ts,..., T, each chain, called a team, has » — 1 vertices
T,={ci=cj—-—ch_ 1} (I=<i<k),

and the arrows between vertices in different teams satisfy the following axioms:

(1) For every i,1 <i=<k, there is no arrow directed to ci;

(2) Forevery i, j,m,i#jand m+# 1, there exists a unique /, / <m, such that c}*c,{,
is in .7(n, k);

(3) .7(n, k) has no closed path.

To each tournament .7(n, k) one associates an automaton %.7(», k) on an alphabet
A={a,,ay,...,a,} in bijection with the set of teams. We put A.7(n, k) = (S, f) with
§=J', THU{0}, f0,a)=c|, and

el a)= ic,’,, if cj—>c',’,, isin .7(n, k),
0  otherwise.
In the terminology of Section 2, A.7(n k) is an automaton obtained by
amalgamation of k n-cycles using connecting functions ¢;: {0,1,...,n—1} x {a;} =
{0,1,...,n—1} such that
m ifcf—*c,ﬂ is in .7{(n, k),
eyl a)= { .
0 otherwise
(i.e. g;; induces a non-decreasing permutation on {0, 1,...,n—1}).

In [6] it was shown that it is possible to define a product of team tournaments by
juxtaposition of graphs after insertion of k& intermediate points. The product
J(n k). 7(n’, k) is of the type .7{n+ n’, k). Furthermore ¥.7(n, k) admits a con-
gruence identifying the states ¢l and ¢, whenever /% m modulod, if and only if
n=dq and .7(n, k)=[7(d, k)}4.

Definition 3.1. A team tournament J(n k) dominates a team tournament
F(m,!) with respect to a factorization of (1-x")/(1 -x) given by the sequence
ki lky| | kn|nif and only if:

(1) ¥.7(n, k) admits a congruence modulo d, where d (=k, or k;) is the modulus of
the sequence k; | ky| -+ | kn|n.

(2) m is the product of the consecutive quotients k;/k}, ks/ks,....K3i/k3i-1, ...
with k5 < n.

Referring to the notation used at the beginning of Section 1, let (1 -x")/(1 —x)=
p(x)q(x) be the factorization defined by the sequence k| k| -+ | kx| 7. This factori-
zation defines a partition n; of each subset 7;U {0} of 7(n, k) whose classes are the
various sets C,-(t)v—-{cf,,:meA +t}, as t runs through the set T of exponents of
g(x)(A is the set of exponents of p(x)). With respect to lower indices of elements of
T;U{0}, =, is a perfect partition admitting the set 7;={c,:m=n~t+1and teT}
as a perfect transversal. We call r; [resp. 7;] the standard partition [resp. transversal]
defined on T, by the sequence k| k; [+ [kn|n.
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In order to construct an amalgamation 2.7(n, k) *.7(m, /) we need two functions
p:SxB—S and w:85xA—S, where A ={a,,as,...,a;}, B={b,b,,...,b,} are the
respective alphabets of U.7(n, k) and A.7{m,/) and S and § their respective set of
states. For every pair i, j, 1<i<k, 1 <j</, we consider functions g8;:7T,U{0}—
T,U{0} and a;;: T;U{0} — T;U{0} such that Ker §;,=n,, B; onto, and Ima;; =
T, ;; One-to-one, and define ¢ and y by

O(Cin D) =Bi(Cr),  w(T],a)=a;(c)).
The second condition on amalgamating functions imposes additional conditions on
the functions g;:

B/ (0)=c/(=p(0,b))),  @;(0)=ci(=y(0,a;)).

Any amalgamation ¥.7(n,k)*¥.7(m,!) constructed as indicated above (where
7(n, k) dominates .7(m,!) with respect to a factorization of (I —x")/(1 — x) defined
by some sequence k| k| -+ | kn|n) will be called a standard amalgamation.

Theorem 3.2. Any standard amalgamation 3 .7(n, kY *W.7(m,l) of two automata of
team tournaments U.7(n, k) and U7(m, 1) is an automaton such that the stabilizer of
0 is C* where C is a complete prefix code and the syntactic semigroup of C* is a
union of groups with one or two 7-classes. If the only closed paths in the state graph
of U7 (n, k)=WN.7(m,[) are those containing 0, then C is finite. Conversely, any finite
prefix code C such that the syntactic semigroup of C* is a union of groups with two
-classes is obtainable as the basis of the stabilizer of 0 in a standard
amalgamation of two automata of team tournaments.

Example 3.3. Diagram 3 shows a standard amalgamation ¥.7(12,1)*U.7(4,1) with a
factorization of (1 —x!2)/(1 — x) given by the sequence 1|2]6|12, i.e.

1 —x!'?
l-x

=(1+x2+xH(1 +x+ x84+ x7).

We put T;={1,2,..., 11}, T,={1,2,3}. The partition n; of T;U {0} is
024[135/68 1079 I11.

The corresponding perfect transversal t; is 12— 7+ 1 modulo 12 with T={0,1,6,7},
i.e. ty=7. With {a} and {b} being the respective alphabets of A.7(12,1) and
A.7(4,1) we have chosen an amalgamation defined by

0(0,b) = 0(2,b) = p(4,b) =1, w(0,a)=1,
o(1,0)=9(3,b)=(5,b)=2, y(1,a)=7,
9(6,b) =0(8,0)=9(10,0)=3,  w(Z,a)=6,
(7, b) = 0(9,b) = p(11,b) =0, v(3,a)=0.
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Diagram 3

4. Proofs

The direct part of Theorem 3.2 will follow from the next lemma, where we study
perfect transversals on the subsets 7;U {0} of %.7(n, k). Given a factorization of
Z, defined by k;|k;|---|kn|n, any transveral of the type T+s where
T={0,ky,2k\,....,ky—ky,...} will be referred to as a transversal of type T.
Similarly, subsets of 7;U {0} of the form {c}:je T+s for some s} will be called
transversals of type T in T;U {0} (convention: 0 is identified to cp).

Lemma 4.1. If %.7(n, k) admits a congruence modulo d, where d is the modulus of
the sequence k| k| -+ | kn | n, then for every i, j, 1<i, j<k, any transversal of type
T in T,U{0} is mapped by a; onto a transversal of type T in T;U {0}.

Proof. For every pair i, j let ¢j;: Z,—Z, be defined by

e i i -
ol = {m—l if ¢; C.,,, is in .7(n, k), @.1.1)
n—1 otherwise.

Viewing .7(n, k) as an amalgamation of & n-cycles the functions ¢;; are related to
the connecting functions ¢; by ¢;(/)=9¢;(,a;)— 1 (mod n). We have 9;;(0)=0 and
p;(y=1-1 for every [, 0</<n. Since A.7(n, k) admits a congruence modulo d,
there is a permutation o € ¥, such that ¢(0) =0, o(/) =/—1 and (i + Ad) =o(i) + Ad
for every I, 0</<d and for every 1, 0<i<n/d. Hence ¢j; is a perfect permutation
of Z, mapping every transversal of type T onto a transversal of type 7 onto a

transversal of type T.

Lemma d4.2. The transition semigroup of a standard amalgamation
A.T(n, k)*» A.7(m, 1) of two automata of team tournaments is a union of groups with
one or two Z-classes.,

Proof. A and B being the input alphabets of ¥.7(n, k) and A.7(m,[) respectively, in
order to prove the lemma it suffices to show that
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(1) any word we A* defines a transformation of rank »n and having an image
which is a cross-section of its kernel;

(2) that any word we (AUB)* with at least one occurrence of a letter of B has
rank m.

In case m = n it will follow that the transition semigroup of the amalgamation will
be completely simple (union of groups with one Z-class). In case m<n, all the
transformations defined by words containing at least one occurrence of a letter of B
form the minimal ideal of the amalgamation (transformations of minimal rank),
and the transition semigroup has two multiplicatively closed Z-class.

The assertion (1) above follows from the fact that all the transformations defined
by we A* have their images in (U;’=l T:))U {0} and we know that the transition semi-
group of U.7(n, k) is a completely simple semigroup. To prove (2) we proceed by
induction on the length of we (AUB)"*. In case {(w) =1, w=b; for some b; € B. But
Im b;=T;U {0} is a cross-section of Ker b; since b; is a transformation defined by
the team tournament .7(m, /).

Assume that all words of length less than the length of w, and containing at least
one occurrence of a letter of B, define a partition of type = on each set T;U {0}, the
equality on each set 7;U {0}, and have an image which is either a transversal of type
T or one of the sets T;U{0}. Let w=w'z with ze AUB.

In case z=a; for some a;e A, w’ has the properties mentioned above. If Im w’'C
Im a; for some a; € A, then Im w’is a transversal of type T in 7;U {0} mapped by a;
on a transversal of type T in 7;U {0} (Lemma 4.1}. Since w’ defines a partition of
type w on 7;U {0}, it follows that Im w=1Im w’a; is a cross-section of Ker w =Ker w’.
Thus rank w=rank w'=m. If Im w’=Im b; for some b;€ A, then Im w is the perfect
transversal 7; (see the definition of  in the amalgamation) in Im @;, which is a cross-
section of the partition defined by w’ on T;U {0}. Hence rank w=rank w’'=m.

In case z=b; for some b, e B, either w’ contains at least one letter of B, or
w’e A*. If w’ contains a letter of B, then as above Imw’CIma;or Im w'=1m b;. In
both cases b; maps Im w’ onto T;U {0} and rank w=rank w'=m. If w'eA™*, we
write w'=a; a;,---a; with a;,...,a; € A. By the induction hypothesis, a;,---a; b;
defines a partition n;, of type n on T;U{0} =Im 4, admitting Im b, as a cross-
section. Since the elements of Im b; are mapped by a;, into distinct classes of n;,
Im b; is a cross section of Ker w’b; =Ker w, and rank w=m.

In the next series of lemmas we assume that C is a finite prefix code on a finite
alphabet X and that the syntactic semigroup Synt(C *), isomorphic to the transition
semigroup of the minimal X*-automaton %¥(C™*) recognizing C*, is a union of
groups. Since the minimal ideal of Synt(C*) is a completely simple semigroup, C is
necessarily a complete code and A(C™*) is a transitive automaton. We denote by 0 the
state of A(C*) whose stabilizer is precisely C*.

We recall that in a transformation semigroup which is a union of groups, each
transformation defines a permutation on its image. In case this transformation
semigroup is the syntactic semigroup of C* where C is a finite code on X, each



214 G. Lallement

x € X induces a transformation on the set of states of A(C *) which is a cycle contain-
ing O (see [5], Prop. 1.2, Ch. 8). We shall write

= <SO Sl Sn-Z Sn-l
12 n-1 0 )

withie §; forevery ,0<i=n-1, U:o' S, being the set of states of Y(C*), and call x
a cyclic transformation.

Lemma 4.3. Let

So 81 - Sa- Ry, Ry - R, _
x=< 0 91 N\ and y= 0o Y 1
1 2 0 reory o O

be two cyclic transformations. [f x and y generate a union of groups then the equi-
valence Ker y [resp. Ker x] restricted to Im x {resp. 1m y] defines a perfect partition
of this set.

Proof. Assume that ImxCRoUR; U---UR; _, with Im xﬂR,;:x:ﬂ for every i;. We
shall prove that the set

T={0,r,x"ryx" ...,r,_,x"}

is a perfect transversal of the partition defined by y on Imx. Since y=y"*1 y”

is an idempotent transformation mapping 0,r;,7;,...,r;,_, onto themselves. Thus
Im xy™={0,r;, 7, ...,r,~,_l}, and T=Imxy™x". For every /=1, xZ x' implies
xy'"_?’xy"' hence Im xy™=Im xy™ is a cross-section of Ker x/y". Consequently, if
r,jxy—r,,‘xy then with @, 8 such that axy™=r;, Bxy™=r; we obtain axy’"xy—
Bxy™xly, hence (axy™)x'y™ = (Bxy™)x'y™. Since Im xy™ is a cross-section of Ker xiy™,
the last equality implies axy™=fxy™ or r;=r;. Thus for every integer /=1, the

elements Ox/, r; x',..., r; _ x'are in different classes of the partition induced by y on
Im x, showing that T is a perfect transversal for this partition.

Any partition of the set {0, 1,2,...,n— 1} admitting a perfect transversal T is such
that for any class I" of the partition we have Z,=I'®@T. It follows that the
cardinality of T (¢ in the proof of Lemma 4.3) divides n, and all classes have the
same size.

Lemma 4.4. Let CCX* be a finite prefix code such that Synt(C*) is a union of
groups. Then for every x,ye X, viewed as transformations of the minimal
automaton U(C*) of C*, at least one of x or y has a kernel which is the identity
when restricted to the image of the other.

Proof. If Ker x and Ker y are not the identity when restricted to Im y and Im x
respectively, then with the notation of Lemma 4.3 there exists r;€ R; and /€ S, such
that Ox=r;x=1and Oy =iy=r, (/;#0 and i#0). It follows that txi=yix = 0xiy/x =
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iyJx=r;x=1, and none of the left factors of x'~'y/x maps | onto 0. Thus if ue X~
is the shortest word such that 1u=0, we have x(x'~'y/x)*u e C for every A=1. This
contradicts the finiteness of C. Thus at least one of x or y induces the identity on the
image of the other.

Corollary 4.5. If x and y are as in Lemma 4.3 and Ker x restricted to Im y is the
identity, then the perfect partition defined by Ker y on Imx admits a transversal
with m=rank y elements.

Proof. Since rank yx=rank y we have yx.# y. But in a finite union of groups xy
and yx are 7-related (since xyxy # xy implies yx 7 xy). Thus rank xy =rank yx=m,
and Im x meets all the classes of Ker y. It follows that the transversal T of the proof
of Lemma 4.3 has exactly m elements.

In case both Ker x and Ker y induce the identity on Im y and Im x respectively,
then the subsemigroup of Synt(C*) generated by x and y consists of mappings
having all the same rank. Since Synt(C*) is a union of groups, this semigroup is a
completely simple semigroup (cf. [1]). More generally, if Y denotes the subset of all
the letters of X defining transformations on the set of states of A(C™) such that
all have the same rank, then the action of Y on the set |J,_,Im y defines a
Y *-automaton; the stabilizer of 0 in this Y *-automatonis D* = crny-, Synt(D ")
is completely simple hence D is an elementary biprefix code [6]. The main theorem
of [6] states that D* can be obtained as the stabilizer of 0 in the automaton of a
team tournament. Consequently C* itself can be obtained by an amalgamation of
team tournaments of various lengths. We shall prove that in case Synt(C 7) has two
Zs-classes, C* is obtainable by a standard amalgamation of two team tournaments.

Lemma 4.6. Let CC X ™ be a finite prefix codes such that Synt(C*) is a union of
groups. Assume that the cyclic transformations defined by x, y€ X as in Lemma 4.3
are such that Ker x restricted to Im y is the identity. Define two subsets T and K of
Im x as follows:

T={ielmx:ixe(Im y)x}, K={kelmx:ky=0y}.

Then the sets K and T =n — T (modulo n) form a factorization of the set 0, 1, ...,n—1
(i.e. every a, 0<a<n—1, can be written uniquely a=k+1 with keK, feT).

Proof. By Lemma 4.3 and Corollary 4.5, Ker y restricted to Im x defines a perfect
partition on Im x having T as perfect transversal and K as the class of 0. By
Proposition 5.3 of Chapter 3 in [5], Z,=K®T, hence Z,=K®T. It remains to
show that this last factorization does not need any reduction modulo n. For every
keK, ky=0y=r,. It follows that for every ie 7, i#0, we have kK <i. Indeed, if k>
for some non-zero je T, let r;e Im y such that r,x=jx. Then x¥y/x¥~J is a proper
left factor of a word in C. Hence there exists v e X* such that x*y'x*Jye C and



216 G. Lallement

since ky'x*~/ =k we also have x¥(y'x*~/) v e C for every A=1 contradicting the
finiteness of C. Thus k=</ for every i#0, ie T, and the inequality is in fact strict
(k<i) because KN T={0}. From k—i<0 (for i#0) we deduce 0<k+(n—i)<n,
showing that K@ T is a factorization of the set {0,1,...,n—-1}.

As indicated in Section 1, the factorization K@ T above is given by a sequence
ky|lky|---|kn|n. We now proceed to show that if x;,x,,...,x; have the same rank,
and if y, ys,..., ¥« of the same rank are such that any x; induces the identity on
Im y;, then the corresponding factorizations K;® 7; are all the same.

Lemma 4.7. [f x;,x;€ X define two cyclic transformations of the same rank and if
Ker x;, Ker x, restricted to Im y is the identity, then the two factorizations induced
by y on Im x| and Im x, are identical. Similarly if y,, y,€ K define two cyclic trans-
Sormations of the same rank and if Ker x restricted to Im y, and Im y; is the
identity, then y, and y, induce identical factorizations on Im x.

Proof. (a) The factorization induced by y on Im x, [resp. Im x;,] corresponds to a
polynomial decomposition

n

l—f\' =p1(0g(x) [resp. = py(x)q2(x)]

with
P =1+xkrexkeq o pxke-1, g =1+x"1+x24 - 4 xim-1

[resp. pa(x) =1+ X"V 4+ X524 oo+ X¥2-1, qo(X) =1 + XT 4+ X204 oo+ xTu-1],

Writing x|, x,, and y as cyclic transformations, we have
SO Sy Sao SO Sl Sn-l
X1= ’ X2=1 = = ’
1 2 - 0 i 2 ... 0

_(Ro Ry - Ry,
(o n o)
with {0,ky, k2, ..., kg-1,R1,R2y ..., Ry—1} G Ro, and 0,7y, ry,r,, -, are distributed in
the classes So, S, --»Sa—r, Of Ker x|, and in the classes $o, $y_ ¢, s +++» Sn_r, Of
Ker x;.

But x;x, and y generate a union of groups. Thus the class of 0 modulo Ker y
restricted to Im x,x,=Im x, and the transversal on Ker x| form a factorization of
Z,. Hence p(x)q2(x)=0 modulo (1 - x")/(1 —x). Similarly, considering x;x, and y
we obtain p,(x)g,(x) =0 modulo (I —x")/(1 —x). Thus

P(X)g2(x) =k(x)p(x)gi(x) and  p;(x)q,(x) =1{(x)p2(x)q(x).

Since the polynomials p;(x), g;(x) have coefficients 0 and 1, this implies p,(x) =p,(x)
and q,(x) = g2(x).
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(b) In case y;, y, have the same rank and Ker x is the identity on Im v, and
Im y,, a similar proof, using the fact that y, vy, and v.y, define perfect partitions on
Imx, shows that y, and y, induce identical factorizations on Im x.

Lemma 4.8. Assume that xy, ..., x, ..., x; define cvclic transformations of the same
rank n, and let U.7(n, k) be the automaton of the team tournament defined on the set
Uf‘;l Im x;. Assume that y € X defines a cyclic transformation such that for every
i, Ker x; is the identity on Im y and the factorization induced by y on Im x; is given
by the sequence s=ky\ky--lkx|n. If x,x3,...,Xs, ¥ generate a union of groups
then U.7(n, k) admits a congruence modulo d, where d is the modulus of s.

Proof. Considering the subtournament of ¥./(n k) on the two letters x,.x,, (for
example) and using the notation of Section 3 we define ¢:2,—7Z, by ¢(0)=0,
p)=m-—1 if ¢/ > c2isin ./7(n, k)and ¢(/)=n -1 otherwise (cf. 4.1.1). By definition
of a tournament ¢ is a bijection satisfying ¢(0) =0, ¢(/)=/— 1. Furthermore, if T is
the transversal of the sequence s, we claim that for every i,¢(7T+1i) is a perfect
transversal of the partition defined by s. Indeed, considering yx|x,, we observe that
Im yx!is T+ i. Since x,X;, y generate a union of groups @(T+ i) ¢ Im x, is a perfect
transversal of the partition defined by Ker y. Thus ¢ is a perfect permutation of Z,,.
By Corollary 1.3, ¢ is a repetition of a permutation ¢ on 0,1,...,d -1 such that
0(0)=0 and a(i)=i—1 for O0<i<d-1. Hence A.7(n k) admits a congruence
modulo d.

The proof of the converse part of Theorem 3.2 can now be completed. If C is a
finite prefix code such that Synt(C™) is a union of groups with two Z-classes, then
the set of letters defining transformations of the higher rank and of the lower-rank
act as two automata of team tournaments U.7(n, k) and A.7(m,!) respectively. By
Lemmas 4.6, 4.7 and 4.8, 7(n, k) dominates .7(/m,/). Lemma 4.6 shows that the
automaton A(C*) is obtained by a standard amalgamation .7 (n, k)= A.7(m,!).
Since C is finite the only closed paths in the graph of this amalgamation are those
containing 0 (and conversely).

5. Remarks

(a) It has been shown in [4] that all the finite prefix codes C such that Synt(C*) is
a union of groups and has a non-trivial group of units are obtainable from decreas-
ing sequences s;=(1 | 1) >s5,>--- >5,, of chains of divisors of n (where n is the order
of the cyclic group of units of Synt(C*)). The partial order relation on chains is
defined as follows: (ki{ky| - |kpsln)=(/i| 12| -+ |1y | n) if and only if for every
S 1=2j<N+1 there exists i,1<2isM+1 such that ky_,|ly;_|l;|ksy. For
example the sequences of divisors of 12,

s1=(1112),  5=>1]2]4]12), s5;=(4]12)
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satisfy s, >s,>s;. The corresponding transformations
2= .1, ... 11), b=<0 211 3{4 6|5 7|8 1019 11 ’
4 11 0

(0123
C=
4

generate a transformation monoid Synt(C *) with 3 completely simple Z-classes (C
is the basis of the stabilizer of 0).

We conjecture that the results above extend to amalgamations of more than two
automata of team tournaments, with appropriate modifications concerning the
existence of congruences on these automata.

(b) The codes investigated in [4] were shown to be decomposable (except for
group codes of order a prime, or synchronized codes). The wider class explored in
the present paper allows to construct non trivial examples of nonsynchronized
indecomposable codes as shown by the code C in Example 3.3. It is easy to check
that the minimal automaton recognizing C* is congruence-free which is equivalent
to C being indecomposable ([5S] Th. 5.6, Ch. 8). The same code provides also a
counterexample to a conjecture of D. Perrin [7], stating that if the degree d of an
indecomposable code C is a power of a prime then @?¢ C for every a€ A. As pointed
out in [8] these types of codes are natural candidates for the study of factorizations
(in non-commuting variables) of the type C—1=P(4 ~1)Q.

3 7 8

4567891011)
8 0
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